C-Nucleosides. 12.† Synthesis of 2^{\prime}-Deoxy Pyridazinone C-Nucleoside from 2-(2,3,5-Tri-O-benzoyl- β-D-ribofuranosyl)furan

Isamu Maeba,* Takashi lijima, Yoko Matsuda, and Chihiro Ito
Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468 Japan

Abstract

The versatile 2^{\prime}-deoxy- β-d-ribofuranosyl-C-nucleoside precursor 4-(1,4-anhydro-3,5-di-O-benzoyl-2-deoxy-D-erythro-pentofuranosyl)-4-oxobutyric acid (4) can be obtained from the furanone (2) which was prepared from the glycosylfuran (1). The synthesis of 3 -(2 -deoxy- β-d-erythropentofuranosyl) pyridazin-6(1H)-one (12) from (4) is described. Catalytic hydrogenation of the γ keto butenoic acid (3) afforded the γ-keto butyric acid (4) and its α isomer (5) in a $1: 1$ ratio. Treatment of ester (6) with hydrazine hydrate in methanol afforded the dihydropyridazinone (8) in 74% yield. Aromatization of compound (8) with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone gave the pyridazinone (10) in 87% yield. Deprotection of compound (10) with methanolic sodium hydroxide afforded compound (12) in 77\% yield.

During our efforts to develop a general synthetic method for C nucleosides, we have prepared an extremely useful intermediate 2-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)furan (1), from which some novel C-nucleosides have been synthesized. ${ }^{1}$ We described earlier the synthesis and ring transformation of the furanone glycoside 5 -hydroxy-2-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-furan- $2(5 \mathrm{H}$)-one (2), which can be obtained from (1) by oxidation of its furan ring. ${ }^{2}$ Compound (2) was converted by elimination into 4-(1,4-anhydro-3,5-di- O-benzoyl-2-deoxy-D-erythro-pent-1-enofuranosyl)-4-oxobut-2-enoic acid (3), which represents a convenient precursor of 2^{\prime}-deoxy- β-D-ribofu-ranosyl- C-nucleosides, exemplified here by its conversion into 3-(2'-deoxy- β-d-erythro-pentofuranosyl)pyridazin-6(1 H)-one (12).

(1)

(2)

(3)

Catalytic hydrogenation of γ-keto butenoic acid (3) afforded two relatively unstable major products. These were readily separable by preparative t.l.c. (p.l.c.) and identified as 4 -(3,5 -di-O-benzoyl-2-deoxy- β-d-erythro-pentofuranosyl)-4-oxobutyric

[^0]acid (4) and its α isomer (5) in a combined yield of 43% and in a $1: 1$ ratio (Scheme 1). For the assignment of anomeric configuration by ${ }^{1} \mathrm{H}$ n.m.r. spectra, Srivastava and Robins ${ }^{3}$ observed that the absorption of 2^{\prime} - and $2^{\prime \prime}-\mathrm{H}$ for α anomers extends to both higher and lower fields, providing a large absorption band width as compared with that of the corresponding β anomers (Method A). Another method of assignment of anomeric configuration was proposed by Igolen and co-workers. ${ }^{4}$ They observed that the $1^{\prime}-\mathrm{H}$ signal was broader for the β anomer than for the corresponding α anomer (Method B). Attempts to assign the configuration of compounds (4) and (5) by the ${ }^{1} \mathrm{H}$ n.m.r. spectra on the basis of the criteria previously described were not practical, since the signal for $1^{\prime}-, 2^{\prime}$, and $2^{\prime \prime}$ H in compounds (4) and (5) appeared as a complex multiplet. Treatment of the butyric acid (4) with hydrochloric acid in methanol at room temperature for 12 h afforded the corresponding ester (6) in 96% yield. To establish the anomeric configuration of compound (6), we prepared the isomer (7) starting from (5) by the method used for the preparation of
(3)
a

(4)
b

(6)

(7)

Scheme 1. Reagents: a, Pd-C, $\mathrm{H}_{2} / \mathrm{THF}-\mathrm{EtOH} ; \mathrm{b}, \mathrm{HCl}-\mathrm{MeOH}$

Scheme 2. Reagents and conditions: $\mathrm{a}_{2} \mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH} ; \mathrm{b}, \mathrm{DDQ}$, benzene, reflux; c, $1 \mathrm{~m}-\mathrm{NaOH}-\mathrm{MeOH}$

Table. Values of $J_{1^{\prime}, 2^{\prime}}+J_{1^{\prime}, 2^{\prime \prime}}$ and $\Delta \delta_{2^{\prime}, 2^{\prime \prime}}$ for anomeric pairs of 2-deoxy-D-ribofuranosyl C-nucleosides

	$\Delta \delta_{2^{\prime}, 2^{\prime \prime}}$ (Method A)	$J_{1^{\prime}, 2^{\prime}}+J_{1^{\prime}, 2^{\prime \prime}}$ (Method B)
(8) (β)	a	15.8
(9) (α)	a	13.5
(10) (β)	0.16	16.1
(11) (α)	0.27	12.8
$(\mathbf{1 2)}(\beta)$	0.04^{b}	16.2
$(\mathbf{1 3)}(\alpha)$	0.54	13.4

${ }^{a}$ Unresolved. ${ }^{b}$ Clustered multiplets.
compound (6). In the ${ }^{1} \mathrm{H}$ n.m.r. of esters (6) and (7) the signals for 2^{\prime} - and $2^{\prime \prime}$-H appeared as a complex multiplet at $\delta 2.39-2.96$ and $2.52-2.64$. However, compound (6) exhibited a doublet doublet centred at $\delta 4.71\left(1^{\prime}-\mathrm{H}, J_{1^{\prime}-2^{\prime}, 2^{\prime \prime}} 9.9 \mathrm{~Hz}\right.$ and 7.1 Hz , peak width 17.0 Hz). This pattern was very similar to that for compound (7), which also exhibited a doublet doublet centred at $\delta 4.72\left(1^{\prime}-\mathrm{H}, J_{1^{\prime}-2^{\prime}, 2^{\prime \prime}} 9.1 \mathrm{~Hz}\right.$ and 3.7 Hz , peak width 12.8 Hz$)$. These results indicate that the configuration of compounds (6) and (7) are the β and α deoxyribo- C-nucleoside, respectively (from Method B).

Reaction of β ester (6) with hydrazine hydrate in methanol at room temperature gave 3 -(3,5 -di- O-benzoyl-2-deoxy- β-d-erythro-pentofuranosyl)-4,5-dihydropyridazin-6(1H)-one (8) in 74% yield. The dehydrogenation was carried out by treatment of the dihydropyridazinone (8) with 2,3-dichloro-5,6-dicyano1,4 -benzoquinone (DDQ) and toluene- p-sulphonic acid (PTSA) in refluxing benzene to give 3 -(3,5 -di- O-benzoyl-2-deoxy- β-D-erythro-pentofuranosyl)pyridazin- $6(1 \mathrm{H})$-one (10), obtained in 87% yield after p.l.c. purification. The structure of the pyridazinone (10) was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. and mass spectra. Of particular significance in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of compound (10) was the presence of doublet appearing at $\delta 6.91$ (J 10.1 Hz), which afforded conclusive evidence for the aromatization of the dihydropyridazinone (8). Deprotection of compound (10) with methanolic sodium hydroxide afforded the pyridazinone (12) in 77\% yield (Scheme 2). It is reasonable to assume that compounds (8), (10), and (12) have the β configuration, since complete inversion to the other isomer (i.e., from β to α) under the reaction conditions would be highly unlikely. To confirm this, we also attempted to prepare the
corresponding α isomers from keto ester (7) by procedures analogous to those for the preparations of the β isomers. We have examined the ${ }^{1} \mathrm{H}$ n.m.r. of several anomeric pairs of $2^{\prime}-$ deoxy-C-nucleosides (Table) and observed that the absorption of 2^{\prime} and $2^{\prime \prime}-\mathrm{H}$ for α anomers (11) and (13) extends to both higher and lower fields, giving a larger absorption band width and $\Delta \delta$ as compared with the corresponding β anomers (10) and (12). The value of $J_{1,2^{\prime}}+J_{1,2^{\prime \prime}}$ was broader for the β anomers (6), (8), (10), and (12) than for the corresponding α anomers (7), (9), (11), and (13). Another technique utilized for assignment of anomeric configuration is an application of the n.O.e. Irradiation of the anomeric proton ($\delta 5.18,1^{\prime}-\mathrm{H}$) in the pyridazinone (10) gave an 8% enhancement of the signal at δ 2.57 assignable to $2^{\prime}-\mathrm{H}$ and a 5% enhancement of the signal at δ 4.55 assignable to $4^{\prime}-\mathrm{H}$ (Figure). These data indicate that compound (10) is β configuration.

Figure. N.O.e. experiment of compound (10)

Experimental

M.p.s were determined on a Yanagimoto apparatus and are uncorrected. Mass spectra were obtained on Hitachi M-52 or M-80 spectrometers. ${ }^{1} \mathrm{H}$ N.m.r. spectra were measured with JNM-GX-270 and GX-400 (JEOL) spectrometers, with tetramethylsilane as internal standard. ${ }^{13} \mathrm{C}$ N.m.r. spectra were recorded on a JEOL JNM-FX-100 Fourier transform spectrometer operating at 25.00 MHz , with tetramethylsilane as internal standard. Elemental analyses were determined by the analytical centre of this faculty. Analytical t.l.c. was performed on glass plates coated with a $0.5-\mathrm{mm}$ layer of silica gel GF_{254} (Merck). The compounds were detected by u.v. light (254 nm). Column chromatography was performed on silica gel C-200 (74-149 $\mu \mathrm{m}$, Wakogel).

4-(3,5-Di-O-benzoyl-2-deoxy- β - and - α-D-erythro-pentofuran-osyl)-4-oxobutyric Acid (4) and (5).-To a suspension of 10% palladium-carbon (36 mg) in tetrahydrofuran-methanol ($1: 1$; 5 ml) was added a solution of the γ-keto butenoic acid (3) (87 $\mathrm{mg}, 0.2 \mathrm{mmol}$) in the same solvent (5 ml) and the mixture was stirred under hydrogen at atmospheric pressure for 12 h . After the catalyst was removed by filtration, the solvent was evaporated off under reduced pressure. T.l.c. (chloroformmethanol; 9:1) showed that the syrup contained two components ($R_{\mathrm{F}} 0.25$ and 0.20). The mixture was separated by p.l.c. with hexane-ethyl acetate (2:1) as developer ($\times 3$). Due to the lability of these compounds good elemental analyses could not be obtained.

Compound (4) ($18.4 \mathrm{mg}, 21 \%$); $R_{\mathrm{F}} 0.25$; syrup; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.38-2.67\left(6 \mathrm{H}, \mathrm{m}, 2-\right.$ and $3-\mathrm{H}_{2}$, and 2^{\prime} - and $\left.2^{\prime \prime}-\mathrm{H}\right), 4.56-4.65(4$ $\mathrm{H}, \mathrm{m}, 1^{\prime}-$ and $4^{\prime}-\mathrm{H}$, and $\left.5^{\prime}-\mathrm{H}_{2}\right), 5.55\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, and $7.36-$ $8.05(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 27.26,32.47$, and $35.22\left(\mathrm{C}-2,-2^{\prime}\right.$, and -3), $64.53\left(\mathrm{C}-5^{\prime}\right), 76.17,83.31$, and $83.78\left(\mathrm{C}-1^{\prime},-3^{\prime}\right.$, and $\left.-4^{\prime}\right)$, 128.53-133.50 (C-Ar), 165.97 and $166.32(\mathrm{C}=\mathrm{O}), 177.38(\mathrm{C}-1)$, and 217.40 (C-4).

Compound (5) ($19.1 \mathrm{mg}, 22 \%$); $R_{\mathrm{F}} 0.20$; syrup; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.59-2.95\left(6 \mathrm{H}, \mathrm{m}, 2-\right.$ and $3-\mathrm{H}_{2}$, and 2^{\prime} - and $\left.2^{\prime \prime}-\mathrm{H}\right)$, $4.45-4.70(4$ $\mathrm{H}, \mathrm{m}, 1^{\prime}-$ and $4^{\prime}-\mathrm{H}$, and $\left.5^{\prime}-\mathrm{H}_{2}\right), 5.52\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, and $7.40-$ $8.07(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 27.38,32.88$, and $35.10\left(\mathrm{C}-2,-2^{\prime}\right.$, and -3), 64.47 (C-5'), $75.88,83.25$, and 83.54 ($\mathrm{C}-1^{\prime},-3^{\prime}$, and -4^{\prime}), 128.53-133.50 (C-Ar), 165.80 and 166.21 (C=O), 177.97 (C-1), and 215.70 (C-4).

Methyl 4-(3,5-Di-O-benzoyl-2-deoxy- β - and - α-D-erythro-pentofuranosyl)-4-oxobutyrate (6) and (7).-Saturated hydrogen chloride-methanol (20 drops) was added to a solution of the acid (4) $(96 \mathrm{mg}, 0.2 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at room temperature for 12 h . The reaction mixture was neutralized with sodium hydrogen carbonate and then extracted with chloroform $(3 \times 10 \mathrm{ml})$. The extracts were combined, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure to afford a syrup, which was purified by p.l.c. with hexane-ethyl acetate (4:1) as developer ($\times 2$).

Compound (6) ($95 \mathrm{mg}, 96 \%$); $R_{\mathrm{F}} 0.28$; syrup (Found: C, 63.9 ; $\mathrm{H}, 5.4 . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 63.87 ; \mathrm{H}, 5.72 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.39-2.96\left(6 \mathrm{H}, \mathrm{m}, 2-\right.$ and $3-\mathrm{H}_{2}$, and 2^{\prime} - and $\left.2^{\prime \prime}-\mathrm{H}\right), 3.64(3 \mathrm{H}, \mathrm{s}$, OMe), 4.53-4.61 ($3 \mathrm{H}, \mathrm{m}, 4^{\prime}$ - and $5^{\prime}-\mathrm{H}_{2}$), $4.71\left(1 \mathrm{H}\right.$, dd, $J_{1^{\prime}, 2^{7}} 7.1$ and $\left.J_{1^{\prime}, 2^{\prime}} 9.9 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.55\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, and $7.42-8.06(10$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 27.09,32.94$, and $35.57\left(\mathrm{C}-2,-2^{\prime}\right.$, and -3$)$, 51.72 (OMe), 64.53 (C-5'), 76.17, 83.54, and 83.72 (C-1', -3^{\prime}, and $\left.-4^{\prime}\right), 128.53-133.44(\mathrm{C}-\mathrm{Ar}), 165.91$ and $166.15(\mathrm{C}=\mathrm{O}), 177.28$ (C-1), and 208.50 (C-4).
In the same manner the α isomer (7) ($82 \mathrm{mg}, 91 \%$) was obtained as a syrup from the acid (5) ($87 \mathrm{mg}, 0.02 \mathrm{mmol}$); R_{F} 0.22 (Found: C, 64.1; $\mathrm{H}, 5.6 . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{8}$ requires $\mathrm{C}, 63.87 ; \mathrm{H}$, $5.72 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.52-2.64\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right.$ and $\left.2^{\prime \prime}-\mathrm{H}\right), 2.71(1$ H , ddd, $J_{2^{\prime}, 3^{\prime}} 6.1, J_{1^{\prime}, 2^{\prime}} 9.1$, and $J_{2^{\prime}, 2^{\prime \prime}} 15.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), 2.90-3.10 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), $3.61(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.52-4.65(3 \mathrm{H}$, $\mathrm{m}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 4.72\left(1 \mathrm{H}\right.$, dd, $J_{1^{\prime}, 2^{\prime \prime}} 3.7$ and $J_{1^{\prime}, 2^{\prime}} 9.1 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 5.52\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, and $7.40-8.11(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 27.32,33.17$, and $35.16\left(\mathrm{C}-2,-2^{\prime}\right.$, and -3$), 51.66$ (OMe), 64.41 (C-5'), 75.88, 83.25, and 83.66 ($\mathrm{C}-1^{\prime},-3^{\prime}$, and -4^{\prime}), 128.47-133.39 (C-Ar), 165.74 and 166.15 (C=O), 172.93 (C-1), and 210.08 (C-4).

3-(3,5-Di-O-benzoyl-2-deoxy- β - and - α-D-erythro-pentofuran-osyl)-4,5-dihydropyridazin $6(1 \mathrm{H})$-one (8) and (9).-To a solution of the ester (6) ($149 \mathrm{mg}, 0.34 \mathrm{mmol}$) in methanol (5 ml) at $0-5^{\circ} \mathrm{C}$ was added a solution of hydrazine hydrate ($21 \mathrm{mg}, 0.42$ mmol) in methanol (1 ml), and the mixture was kept at room temperature for 12 h . The reaction mixture was evaporated to dryness under reduced pressure to afford a syrup, which was
purified by p.l.c. with hexane-ethyl acetate (1:1) as developer ($\times 2$).

Compound (8) ($107 \mathrm{mg}, 74 \%$); $R_{\mathrm{F}} 0.25$; syrup (Found: C, 64.0 ; $\mathrm{H}, 5.4 ; \mathrm{N}, 6.5 . \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ requires C, $63.65 ; \mathrm{H}, 5.21$; $\mathrm{N}, 6.30 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.36-2.62\left(6 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}_{2}\right.$, and $2^{\prime}-$ and $\left.2^{\prime \prime}-\mathrm{H}\right), 4.47-4.56\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 4.85\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 2^{\prime \prime}}\right.$ 6.2 and $\left.J_{1^{\prime}, 2^{\prime}} 9.6 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.60\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 7.43-8.07(10 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$, and $8.29(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 20.59$ and $26.03(\mathrm{C}-4$ and -5), 35.86 (C-2'), 64.47 (C-5'), $76.64,80.15$, and 83.13 (C-1', -3^{\prime}, and -4^{\prime}), 128.53-133.34 (C-Ar), 153.22 (C-3), 166.15 and 167.61 ($\mathrm{C}-6$ and $\mathrm{C}=\mathrm{O}$).

In the same manner the α isomer (9) ($132 \mathrm{mg}, 87 \%$) was obtained as a syrup from the ester (7) ($162 \mathrm{mg}, 0.032 \mathrm{mmol}$); R_{F} 0.20 (Found: C, 62.9; H, 5.1; N, 6.2. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 62.74 ; \mathrm{H}, 5.49 ; \mathrm{N}, 6.36 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.44-2.53(3 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}_{2}$ and $\left.2^{\prime \prime}-\mathrm{H}\right), 2.66-2.82\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{2}\right), 4.50-4.58$ $\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 4.91\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 2^{\prime \prime}} 5.4\right.$ and $J_{1^{\prime}, 2^{\prime}} 8.1$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 5.56\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 7.36-8.07(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.38(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.94$ and $26.15(\mathrm{C}-4$ and -5$)$, 35.39 (C-2'), 64.41 (C-5'), 76.17, 79.74, and 82.31 (C-1', -3^{\prime}, and $\left.-4^{\prime}\right), 128.53-133.50(\mathrm{C}-\mathrm{Ar}), 154.21$ (C-3), and 165.97, 166.26, and 167.49 ($\mathrm{C}-6$ and $\mathrm{C}=\mathrm{O}$).

3-(3,5-Di-O-benzoyl-2-deoxy- β - and - α-D-erythro-pentofuran-osyl)pyridazin- $6(1 \mathrm{H})$-one (10) and (11).-A solution of the dihydropyridazinone (8) ($30 \mathrm{mg}, 0.07 \mathrm{mmol}$), DDQ (32.3 mg , 0.14 mmol) and PTSA ($13.5 \mathrm{mg}, 0.07 \mathrm{mmol}$) in benzene (2 ml) was heated under reflux for 2 h . The reaction mixture was evaporated to dryness under reduced pressure to afford a syrup, which was purified by p.l.c. with hexane-ethyl acetate ($1: 1$) as developer ($\times 2$).
Compound (10) ($26 \mathrm{mg}, 87 \%$); $R_{\mathrm{F}} 0.24$; syrup (Found: M^{+}, 420.1315. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $M, 420.1319$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.41$ (1 H , ddd, $J_{2^{\prime \prime}, 3^{\prime}} 6.1, J_{1^{\prime}, 2^{\prime \prime}} 10.4$, and $\left.J_{2^{\prime}, 2^{\prime \prime}} 14.0 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 2.57(1 \mathrm{H}$, ddd, $J_{2^{\prime}, 3^{\prime}} 1.0, J_{1^{\prime}, 2^{\prime}} 5.7$, and $\left.J_{2^{\prime}, 2^{\prime \prime}} 14.0 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.53-4.70(3 \mathrm{H}$, $\mathrm{m}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 5.18\left(1 \mathrm{H}\right.$, dd, $J_{1^{\prime}, 2^{\prime}} 5.7$ and $J_{1^{\prime}, 2^{\prime \prime}} 10.4 \mathrm{~Hz}, 1^{\prime}-$ H), $5.63\left(1 \mathrm{H}\right.$, apparent d, $\left.3^{\prime}-\mathrm{H}\right), 6.91(1 \mathrm{H}, \mathrm{d}, J 10.1 \mathrm{~Hz}, 5-\mathrm{H})$, $7.42-8.09(11 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and ArH$)$, and $12.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 38.02\left(\mathrm{C}-2^{\prime}\right), 64.59\left(\mathrm{C}-5^{\prime}\right), 76.76,78.39$, and $83.48(\mathrm{C}-$ $1^{\prime},-3^{\prime}$, and -4^{\prime}), $128.53-133.50$ (C-Ar), 130.58 and 131.63 (C-4 and -5), 147.49 (C-3), and 162.29, 166.03, and 166.15 (C-6 and $\mathrm{C}=\mathrm{O}$).
In the same manner the α isomer (11) ($227 \mathrm{mg}, 93 \%$) was obtained as a syrup from the dihydropyridazinone (9) (245 mg , 0.058 mmol); $R_{\mathrm{F}} 0.24$ (Found: $M^{+}, 420.1302$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.62(1$ H , ddd, $J_{2^{\prime \prime}, 3} 3.0, J_{1^{\prime}, 2^{\prime \prime}} 4.7$, and $\left.J_{2^{\prime}, 2^{\prime \prime}} 14.4 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 2.89(1 \mathrm{H}$, ddd, $J_{2^{\prime}, 3^{\prime}} 6.7, J_{1^{\prime}, 2^{\prime}} 8.1$, and $J_{2^{\prime}, 2^{\prime \prime}} 14.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), 4.54-4.65 (3 $\mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 5.26\left(1 \mathrm{H}\right.$, dd, $J_{1^{\prime}, 2^{\prime \prime}} 4.7$ and $J_{1^{\prime}, 2^{\prime}} 8.1 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 5.60\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 7.00(1 \mathrm{H}, \mathrm{d}, J 9.8 \mathrm{~Hz}, 5-\mathrm{H}), 7.37-8.12$ ($11 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and ArH), and $12.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 37.15 (C-2'), 64.47 (C-5'), 76.29, 78.57, and 82.78 ($\mathrm{C}-1^{\prime},-3^{\prime}$, and -4^{\prime}), 128.53-133.44 (C-Ar), 130.27 and 131.18 (C-4 and -5), $149.01(\mathrm{C}-3)$, and $162.35,165.86$, and 166.21 ($\mathrm{C}-6$ and $\mathrm{C}=\mathrm{O}$).

3-(2-Deoxy- β - and - α-D-erythro-pentofuranosyl)pyridazin$6(1 \mathrm{H})$-one (12) and (13).-To a solution of the di-O-benzoate (10) $(124 \mathrm{mg}, 0.58 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added $1 \mathrm{~m}-\mathrm{NaOH}(1.5 \mathrm{ml})$ during 2 h , and the mixture was then rendered neutral with acetic acid. The reaction mixture was evaporated to dryness under reduced pressure to afford a syrup, which was purified by p.l.c. with chloroform-methanol ($6: 1$) as developer ($\times 2$).
Compound (12) ($48 \mathrm{mg}, 77 \%$); $R_{\mathrm{F}} 0.35$; syrup (Found: M^{+}, 212.0818. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $M, 212.0796$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ $2.11-2.20\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}\right.$ - and $\left.2^{\prime \prime}-\mathrm{H}\right), 3.66\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 3.95(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.02\left(1 \mathrm{H}\right.$, dd, $J_{1^{\prime}, 2^{\prime \prime}} 7.4$ and $J_{1^{\prime}, 2^{\prime}}$ $\left.8.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 6.97(1 \mathrm{H}, \mathrm{d}, J 9.8 \mathrm{~Hz}, 5-\mathrm{H})$, and $7.71(1 \mathrm{H}, \mathrm{d}, J 9.8$ $\mathrm{Hz}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 41.95\left(\mathrm{C}-2^{\prime}\right), 63.77$ (C-5'), 74.18, 79.80,
and 87.78 ($\mathrm{C}-1^{\prime},-3^{\prime}$, and -4^{\prime}), 130.93 and 133.85 (C-4 and -5), $150.59(\mathrm{C}-3)$, and $163.81(\mathrm{C}=\mathrm{O})$.

In the same manner the α isomer (13) ($53 \mathrm{mg}, 64 \%$) was obtained as a syrup from the di- O-benzoate (11) $(162 \mathrm{mg}, 0.39$ mmol); $R_{\mathrm{F}} 0.35$ (Found: $\mathrm{M}^{+}, 212.0773$); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.07(1 \mathrm{H}$, ddd, $J_{2^{\prime \prime}, 3^{\prime}} 5.0, J_{1^{\prime}, 2^{\prime \prime}} 6.7$, and $\left.J_{2^{\prime}, 2^{\prime \prime}} 14.1 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 2.61(1 \mathrm{H}, \mathrm{dt}$, $J_{2^{\prime}-13^{\prime}} 6.7$ and $\left.J_{2^{\prime}, 2^{\prime \prime}} 14.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 3.56-3.70\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$, $3.99\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.99\left(1 \mathrm{H}, \mathrm{t}, J_{1^{\prime}-z^{\prime}, z^{\prime}} 6.7 \mathrm{~Hz}\right.$, $\left.1^{\prime}-\mathrm{H}\right), 6.97(1 \mathrm{H}, \mathrm{d}, J 9.8 \mathrm{~Hz}, 5-\mathrm{H})$, and 7.76 ($1 \mathrm{H}, \mathrm{d}, J 9.8 \mathrm{~Hz}, 4-\mathrm{H}$); $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 41.36$ ($\left.\mathrm{C}-2^{\prime}\right), 63.30\left(\mathrm{C}-5^{\prime}\right), 73.42,79.45$, and 88.51 ($\mathrm{C}-1^{\prime},-3^{\prime}$, and -4^{\prime}), 130.93 and 133.91 (C-4 and -5), 151.81 (C-3), and $163.63(\mathrm{C}=\mathrm{O})$.

References

1 I. Maeba, K. Iwata, F. Usami, and H. Furukawa, J. Org. Chem., 1983, 48, 2998; I. Maeba, F. Usami, and H. Furukawa, ibid., 1984, 49, 1534; I.

Maeba, F. Usami, T. Ishikawa, H. Furukawa, T. Ishida, and M. Inoue, Carbohydr. Res., 1985, 140, 1; I. Maeba, T. Ishikawa, and H. Furukawa, ibid., p. 332; I. Maeba, O. Hara, M. Suzuki, and H. Furukawa, J. Org. Chem., 1987, 52, 2368; I. Maeba, T. Takeuchi, T. Iijima, and H. Furukawa; ibid., 1988, 53, 1401; I. Maeba, M. Suzuki, N. Takahashi, T. Iijima, and H. Furukawa, J. Heterocycl. Chem., 1988, 25, 503; I. Maeba, T. Takeuchi, T. Iijima, K. Kitaori, and H. Muramatsu, J. Chem. Soc., Perkin Trans. 1, 1989, 649.
2 I. Maeba, M. Suzuki, O. Hara, T. Takeuchi, and H. Furukawa, J. Org. Chem., 1987, 52, 4521.
3 P. C. Srivastava and R. K. Robins, J. Heterocycl. Chem., 1981, 52, 4521.

4 T. Huynh-Dinh, J. Igolen, E. Bisagni, J. P. Marquet, and A. Civier, J. Chem. Soc., Perkin Trans. 1, 1977, 761.

[^0]: \dagger Part 11, preceding paper.

